# LZ2313H5 

## 1/3 type Color CCD Area Sensor for NTSC

## DESCRIPTION

LZ2313H5 is a $1 / 3$-type ( 6.0 mm ) solid-state im age sensor that consists of PN phote-diodes and CCDS (charge-coupled devices). Having approximately 270000 pixels (horizontal $542 \times$ vertical 492), the sensor provides a high resolution stable color image.

## FEATURES

- Number of pixels : 512 (H) X 492 (V)

Pixel pitch : $9.6 \mu \mathrm{~m}(\mathrm{H}) \times 7.5 \mu \mathrm{~m}$ (V) Number of optical black pixels : Horizontal; front 2 and rear 28

- Complementary color filters of Mg, G, Cy and Ye
- Low fixed pattern noise and lag
- No sticking and no image distortion
- Blooming suppression structure
- Built-in output amplifier
- Variable electronic shutter (1/60 to $1 / 10000$ s)
- Compatible with NTSC standard
- Package : 16-pin SDIPICERDIP](WDIPOI 6-N-0500C)


## BLOCK DIAGRAM



PIN DESCRIPTION

| SYMBOL | PIN NAME | NOTE |
| :--- | :--- | :---: |
| RD | Reset transistor drain |  |
| OD | Output transistor drain |  |
| OS | Video output |  |
| $\phi_{\mathrm{RS}}$ | Reset transistor gate clock |  |
| $\phi_{\mathrm{V} 1,} \phi_{\mathrm{V} 2,} \phi_{\mathrm{V} 3,} \phi_{\mathrm{V} 4}$ | Vertical shift register gate clock |  |
| $\phi_{\mathrm{H} 1}, \phi_{\mathrm{H} 2,}$ | Horizontal shift register gate clock |  |
| OFD | Overflow drain |  |
| PW | P type well |  |
| GND | Ground | 1 |
| $\mathrm{TI}_{1}$ | Test terminal |  |
| $\mathrm{NC}_{1}, \mathrm{NC} 2$ | No connection |  |

## NOTE :

1. Connect each pin to GND directly or through a capacitor larger than $0.047 \mu \mathrm{~F}$.

ABSOLUTE MAXIMUM RATINGS
( $\mathrm{Ta}=25^{\circ} \mathrm{C}$ )

| PARAMETER | SYMBOL | RATING | UNIT |
| :---: | :---: | :---: | :---: |
| Output transistor drain voltage | Voo | Oto +18 | V |
| Reset transistor drain voltage | Vrd | Oto +18 | v |
| Overflow drain voltage | Vofd | o to +55 | V |
| Test terminal, $\mathrm{T}^{\prime}$ | $V_{T 1}$ | Oto +18 | v |
| Reset gate clock voltage | $V_{\phi \text { R }}$ | -0.3 to +18 | V |
| Vertical shift register clock voltage | $\mathrm{V}_{\phi} \mathrm{V}$ | $-9,0$ to +18 | V |
| Horizontal shift register clock voltage | $\mathrm{V}_{\phi} \mathrm{H}$ | -0.3 to +18 | v |
| Voltage difference between PW and vertical clock | VPw-V ${ }_{\text {¢ }} \mathrm{V}$ | -27 to O | V |
| Storage temperature | Tstg | -40 to +80 | "c |
| Operating ambient temperature | Topr | -20 to +70 | ${ }^{\circ} \mathrm{C}$ |

RECOMMENDED OPERATING CONDITIONS

| PARAMETER |  |  | SYMBOL | MIN. | TYP. | MAX. | UNIT | NOTE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Operating ambient tempetarure |  |  | Topr |  | 25.0 |  | ${ }^{\circ} \mathrm{C}$ |  |
| Output transistor drain voltage |  |  | VOD | 14.5 | 15.0 | 16.0 | $v$ |  |
| Reset transistor drain voltage |  |  | VRD |  | Voo |  | v |  |
| Overflow drain voltage | When DC is applied |  | Vom | 5.0 | (adj.) | 19.0 | v | 1 |
|  | When pulse is applied p-p level |  | $V_{\text {¢ }}$ OFD | 22.0 |  |  | v | 2 |
| Ground |  |  | GND |  | 0.0 |  | v |  |
| P-well voltage |  |  | Vpw | -9.0 |  | $\mathrm{V}_{\phi} \mathrm{VL}$ | v |  |
| Test terminal, T |  |  | $V_{\text {T1 }}$ |  | Voo |  | v |  |
| Vertical shift register clock |  | LOW level | $V_{\phi V I L}, V_{\phi V 2 L}$ $V_{\phi}$ V3L, $V_{\phi \text { V4L }}$ | - 8.5 | - 8.0 | -7.5 | v |  |
|  |  | INTERMEDIATE level | $V_{\phi} V_{11}, V_{\phi V 21}$ <br> $V_{\phi} V_{31}, V_{\phi} V_{41}$ |  | 0.0 |  | v |  |
|  |  | HIGH level | $\mathrm{V}_{\phi \text { V1н, }} \mathrm{V}_{\phi \text { V3 }}$ | 16.0 | 16.5 | 17.0 | v |  |
| Horizontal shift register clock |  | LOW level | $\mathrm{V}_{\phi \text { HIL, }} \mathrm{V}_{\phi \text { H2L }}$ | - 0,05 | 0.0 | 0.05 | $v$ |  |
|  |  | HIGH level | $\mathrm{V}_{\phi \text { H1 }}$, $\mathrm{V}_{\phi \text { H2 }}$ | 4.7 | 5.0 | 6.0 | v |  |
| Reset gate clock |  | LOW level | $\mathrm{V}_{\text {¢ }}$ RSL | 0.0 |  | VRD-13.0 | v |  |
|  |  | HIGH level | $\mathrm{V}_{\phi \text { RSH }}$ | VRD -8.5 |  | 9.5 | v |  |
| Vertical shift register clock frequency |  |  | $f_{\phi} V_{1}, f_{\phi} V_{2}$ $f_{\phi} \mathrm{V}_{3}, \mathrm{f}_{\phi \mathrm{V}}$ |  | 15.73 |  | kHz |  |
| Horizontal shift register clink frequency |  |  | $\mathrm{f}_{\phi} \mathrm{H} 1, \mathrm{f}_{\phi} \mathrm{H} 2$ |  | 9.53 |  | MHz |  |
| Reset gate clock frequency |  |  | $\mathrm{f}_{\phi} \mathrm{RS}$ |  | 9.53 |  | MHz |  |

## NOTES:

1. When DC voltage is applied, shutter spaad is $1 / 60$ seconds.
2. When pulse is applied, shutter spaad is leaa than $1 / 60$ seconds

## ELECTRICAL CHARACTERISTICS (Drive method : Field Accumulation)

( $\mathrm{Ta}=25^{\circ} \mathrm{C}$, Operating conditions : typical values for the recommended operating conditions, Color temperature of light source : $3200 \mathrm{~K} / \mathrm{IR}$ cut-off filter (CM-500, 1 mmt ))

| PARAMETER | SYMBOL | MIN. | TYP. | MAX. | UNIT | NOTE |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Photo response non-uniformity | PRNU |  |  | 15 | $\%$ | $\mathbf{2}$ |
| Carrier saturation | Vsat | 450 |  |  | mV | $\mathbf{3}$ |
| Dark output voltage | Vdark |  | 0.3 | 3.0 | mV | $\mathbf{1 , 4}$ |
| Dark signal non-uniformity | DSNU |  | 0.6 | 2.0 | mV | $\mathbf{1 , 5}$ |
| Sensitivity | R | $\mathbf{4 4 0}$ | 600 |  | mV | $\mathbf{6}$ |
| Smear ratio | SMR |  | 0.009 | 0.016 | $\%$ | $\mathbf{7}$ |
| Image lag | AI |  |  | 1.0 | $\%$ | $\mathbf{8}$ |
| Blooming suppression ratio | ABL | 100 |  |  |  | $\mathbf{9}$ |
| Output transistor drain current | IOD |  | 4.0 | 8.0 | mA |  |
| Output impedance | Ro |  | 350 |  | $\Omega$ |  |
| Vector breakup |  |  |  | 5.0 | $\%$ | 10 |
| Line crawling |  |  |  | 3.0 | $\%$ | 11 |
| Luminance flicker |  |  |  | 2.0 | $\%$ | 12 |

- The standard output voltage is defined as 150 mV by the average output voltage under uniform illumination.
- The standard exposure level is defined when the average output voltage is 150 mV under uniform illumination.
- Vofo should be adjusted to the minimum voltage with that $A B L$ satisfy the specification.


## NOTES :

1. $\mathrm{Ta}:+60^{\circ} \mathrm{C}$
2. The image area is divided into $10 X 10$ segments. The segment's voltage is the average output voltage of all the pixels within the segment. PRNU is defined by (Vmax Vmin)/Vo, where Vmax and Vmin are the maximum and the minimum values of each segment's voltage respectively, when the average output voltage $V o$ is 150 mV .
3. The output voltage measured at the carrier peak when the carrier signal reaches maximum.
4. The average output voltage under a non-exposure condition.
5. The image area is divided into 10 X 10 segments. DSNU is defmed by (Vdmax - Vdmin) under the non-exposure condition where Vdmax and Vdmin are the maximum and the minimum values of each segment's voltage, respective $y$, that is the average output voltage over all pixels in the segment.
6. The average output voltage when a 1000 lux light source attached with a $90^{\circ} \mathrm{A}$ reflector is imaged by a lens of $F 4$, $f 50 \mathrm{~mm}$.
7. The sensor is adjusted to position a V/I $O$ square at the center of image area where V is the vertical length of the image area. SMR is defined by the ratio of the output voltage detected during the vertical blanking period to the maximum of the pixel voltage in the $\mathrm{V} / \mathrm{I} \mathrm{O}$ square.
8. The sensor is exposed at the exposure level correspond ing to the standard condition preceding non-exposure condition. AI is defined by the ratio between the output voltage measured at the 1st field during the non-exposure period and the standard output voltage.
9. The sensor is adjusted to position a V/I $O$ square at the center of image area. ABL is the ratio between the exposure at the standard condition and the exposure at a point where a blooming is observed.
10 Observed with a vector scope when the color bar chart is imaged under the standard exposure condition.
11 The difference between the average output voltage of the $(M g+Y e),(G+C y)$ line and the $(M g+C y),(G+Y e)$ line under the standard exposure condition.
12 The difference between the average output voltage of the odd field and the even field.

## PIXEL STRUCTURE



## COLOR FILTER ARRAY

$(1,492)$

| Mg | G | Mmg | G | Mng |
| :---: | :---: | :---: | :---: | :---: |
| Cy | YtY | Cy | Ye | Cy |
| G | Mg | G | Mg | G |
| Cy | Ye | cy | Ye | Cy |
| Mg | G | Mg | G | Mig |
| Cy | Ye | Cy | Ye | Cy |


(1,1)
$(512,492)$

| G | Mg | G | Mg | G |
| :---: | :---: | :---: | :---: | :---: |
| Ye | Cy | Ye | Cy | Ye |
| Mg | G | Mg | G | Mg |
| Ye | Cy | Ye | Cy | Ye |
| G | Mg | G | Mg | G |
| Ye | Cy | Ye | Cy | Ye |


| Mg | G | Mg | G | Mg |
| :---: | :---: | :---: | :---: | :---: |
| Ye | Cy | Ye | Cy | Ye |
| G | Mg | G | Mg | G |
| Ye | Cy | Ye | Cy | Ye |
| Mg | G | Mg | G | Mg |
| Ye | Cy | Ye | Cy | Ye |

## TIMING DIAGRAM EXAMPLE

VERTICAL TRANSFER TIMING
(ODD FIELD)

(EVEN FIELD)


HORIZONTAL TRANSFER TIMING


READOUT TIMING
(ODD FIELD)

(EVEN FIELD)


## SYSTEM CONFIGURATION EXAMPLE



